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Abstract

A Monte Carlo model of steady-state light transport in multi-layered tissues (MCML) has been coded in ANSI Stan-
dard C; therefore, the program can be used on various computers. Dynamic data allocation is used for MCML, hence
the number of tissue layers and grid elements of the grid system can be varied by users at run time. The coordinates
of the simulated data for each grid element in the radial and angular directions are optimized. Some of the MCML
computational results have been verified with those of other theories or other investigators. The program, including

the source code, has been in the public domain since 1992.

Keywords: Monte Carlo; Photon transport; Tissue optics; Standard C; Dynamic allocation

1. Introduction

Since Wilson and Adam [1] first introduced
Monte Carlo simulations into the field of laser-
tissue interactions, it has been widely used to simu-
late light transport in tissues for various applica-
tions and gone through several improvements.
[2-7]. Although multiple research groups have im-
plemented Monte Carlo simulations in various
computer languages, our Standard C implementa-
tion of Monte Carlo modeling of photon transport
in multi-layered tissues (MCML), upon which a
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light beam is normally incident, is the first one that
is portable to multiple computer platforms. We
also optimize the coordinates of the scored physi-
cal quantities in each grid element, and allocate ar-
rays and matrices dynamically so that the number
of tissue layers and grid elements can be varied at
run time.

Monte Carlo simulation has been used to solve
various physical problems besides laser-tissue in-
teractions. However, there is no distinct and well
established definition. We would like to adopt the
definition by Lux et al. [8]: ‘In all applications of
the Monte Carlo method, a stochastic model is
constructed in which the expected value of a cer-
tain random variable (or of a combination of
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several variables) is equivalent to the value of a
physical quantity to be determined. This expected
value is then estimated by the average of multiple
independent samples representing the random
variable introduced above. For the construction of
the series of independent samples, random num-
bers following the distribution of the variable to be
estimated are used.’

Monte Carlo simulations offer a flexible, yet rig-
orous approach to photon transport in turbid tis-
sues, which can score multiple physical quantities
simultaneously. The method describes local rules
of photon propagation that are expressed, in the
simplest case, as probability distributions that de-
scribe the step size of photon movement between
sites of photon-tissue interaction, and the angles of
deflection in a photon’s trajectory when a scatter-
ing event occurs. However, the method is statis-
tical in nature and as such, relies on calculating the
propagation of a large number of photons (e.g.
100 000) by the computer. As a result, this method
requires a large amount of computational time.

The Monte Carlo simulations are based on
macroscopic optical properties that are assumed to
extend uniformly over small units of tissue
volume. Mean free paths between photon-tissue
interaction sites typically range from 10-1000 um,
and 100 um is a typical value in the visible spec-
trum [9]. For example, the simulations do not treat
the details of radiant energy distribution within
cells. The photons are treated as classical particles,
and the polarization and wave phenomenon are
neglected. The current version does not consider
anisotropic media, although the scattering can be
anisotropic.

The Monte Carlo simulations may be used for
both diagnostic and therapeutic applications of
lasers and other optical sources in medicine. For
example, Monte Carlo-simulated diffuse reflec-
tance can be used to deduce optical properties of
tissues, which may be used to differentiate
cancerous tissue from normal tissue. Monte Carlo
simulated optical energy deposition inside tissue
may be used to compute light dosage for photody-
namic therapy of disease.

In the following sections, we will describe the
problem we are trying to solve (Section 2), describe
how to trace photons in tissues (Section 3) and

Photon Beam

Fig. 1. A schematic of the Cartesian coordinate system set up
on multi-layered tissues. The y-axis points outward.

score physical quantities (Section 4), and will pres-
ent a few MCML computational results (Section
5) followed by a section for conclusions (Section
6).

2. The problem and coordinate systems

The Monte Carlo simulation described in this
paper deals with the transport of an infinitely nar-
row photon beam, perpendicularly incident on a
multi-layered tissue (Fig. 1). The responses to the
infinitely narrow photon beam are called impulse
responses. Each layer is infinitely wide, and is
described by the following parameters: the
thickness, the refractive index, the absorption co-
efficient g, (cm™'), the scattering coefficient g
(cm™), and the anisotropy factor g. The refractive
indices of the ambient medium above the tissue
(e.g. air) and the ambient medium below the tissue
(if existing) need to be given as well. Although the
real tissue can never be infinitely wide, it can be so
treated on the condition that it is much wider than
the spatial extent of the photon distribution. The
tissue layers are parallel to each other.

The absorption coefficient u, is defined as the
probability of photon absorption per unit in-
finitesimal pathlength, and the scattering coeffic-
ient is defined as the probability of photon
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scattering per unit infinitesimal pathlength. For
the simplicity of notation, the total interaction co-
efficient u,, which is the sum of the absorption co-
efficient p, and the scattering coefficient g, is
sometimes used. Consequently, the interaction co-
efficient means the probability of photon interac-
tion per unit infinitesimal pathlength. The
anisotropy g is the average of the cosine value of
the deflection angle [10].

Three coordinate systems are used in the Monte
Carlo simulation at the same time. A Cartesian
coordinate system is used to trace photon move-
ments. The origin of the coordinate system is the
photon incident point on the tissue surface; the z-
axis is the normal of the surface pointing toward
the inside of the tissue; and the xy-plane is
therefore on the tissue surface (Fig. 1).

Since the infinitely narrow photon beam is
perpendicular to the tissue surface of a multi-
layered tissue, the problem has cylindrical sym-
metry. Therefore, we set up a cylindrical coor-
dinate system to score internal photon absorption
as a function of r and z, where r and z are the radi-
al and z coordinates of the cylindrical coordinate
system, respectively. The cylindrical coordinate
system and Cartesian coordinate system share the
origin and z-axis. The r coordinate of the cylindri-
cal coordinate system is also used for the diffuse
reflectance and diffuse transmittance as a function
of r and a, where « is the angle between the pho-
ton exiting direction and the normal to the tissue
surfaces (—z axis for reflectance and z axis for
transmittance).

A moving spherical coordinate system, whose z
axis is dynamically aligned with the photon pro-
pagation direction, is used for sampling of the pro-
pagation direction change of a photon packet. In
this spherical coordinate system, the deflection
angle 6 and the azimuthal angle y due to scattering
are first sampled. Then, the photon direction is up-
dated in terms of the directional cosines in the
Cartesian coordinate system (see Section 3.7).

To score physical quantities in the Monte Carlo
simulation, we need to set up grid systems. For
scoring photon absorption, a two-dimensional
homogeneous grid system is set up in the r and z
directions. The grid separations are Ar and Az in
the r and z directions, respectively. The total

numbers of grid elements in the r and z directions
are N, and N,, respectively. For scoring diffuse
reflectance and transmittance, a two-dimensional
homogeneous grid system is set up in the r and «
directions. This grid system can share the r direc-
tion with the grid system for photon absorption;
therefore, we need to set up one extra one-
dimensional grid system for the diffuse reflectance
and transmittance in the « direction. The total
number of grid elements is N,. Since we always
chose the range of « to be 0 < « < «/2, the grid
separation is Aa = /(2 N,).

Photon absorption, fluence, reflectance, and
transmittance are the physical quantities to be
simulated. The simulation propagates photons in
three dimensions, records photon deposition, A(r,
z), in the neighborhood of (r, z), and converts it
into probability of a photon being absorbed per
unit volume (cm ™) at the end of tracing multiple
photons. The photon probability fluence (cm™?),
o(r, 2), which is the photon probability flow per
unit area, can be computed through A(r, z). Dur-
ing the simulation, the absorption or fluence due
to the first photon-tissue interactions are singled
out and scored separately because they always
happen on the z-axis [11]. The simulation also
records the escape of photons at the top and bot-
tom surface as reflectance, R(r, «), and transmit-
tance, T(r, a) (cm~2sr™!), which is defined as the
probability of a photon escaping per unit area at
r per unit solid angle around «. Similar to the ab-
sorption, the unscattered reflectance or transmit-
tance are scored separately. Physical quantities of
lower dimensions can be computed through higher
dimensions. For example, photon absorption as a
function of z, 4(z), can be obtained by integrating
A(r, z) over r.

In MCML, for consistency we use centimeter
(cm) as the basic unit of length throughout the
simulation. For example, the thickness of each
layer and the grid separations in the r and z direc-
tions are in cm. The absorption coefficient and
scattering coefficient are in cm ™.

In some of the discussions, the arrays will simply
be referenced by the location of the grid element,
e.g. (r, z) or (r, @), rather than by the indices of the
grid element, although the indices are used in the
program to reference array elements.
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3. Simulating photon propagation

This section presents the rules that define pho-
ton propagation in the Monte Carlo model as ap-
plied to muiti-layered tissues. Some treatment is
based upon Ref. 2, which deals with a semi-infinite
tissue. We consider multi-layered tissues, and our
approach is general enough to include clear media
(e.g. glass slides or water layers) as a special case.
Fig. 2 shows the basic flowchart for the photon
tracing part of the Monte Carlo calculation, which
has been implemented in ANSI Standard C. Many
boxes in the flowchart are direct implementations
of the following discussions.

3.1. Sampling random variables

The Monte Carlo method relies on the random
sampling of variables from probability distribu-
tions. Several books [8, 12, 13] provide good refer-
ence for the principles of Monte Carlo modeling.

For random variable x, there is a probability
density function p(x) that defines the distribution
of x over the interval (a, b). This variable may be
the variable step size that a photon will take be-
tween photon-tissue interaction sites, or the angle
of deflection that a scattered photon may experi-
ence due to a scattering event.

To simulate propagation, we want to be able to
choose a value for x repeatedly and randomly
based on a pseudo-random number generator pro-
vided by a computer. The computer generates a
random variable, ¢, which is uniformly distributed
over the interval (0, 1). The generally non-uniform
probability density function p(x) can be sampled
by solving the following equation for x:
18,7,12—14]

S "p(0dx = £ for £ € (0,1) 3.1)

a

In the following sections, Eq. 3.1 will be
repeatedly invoked for sampling propagation var-
iables.

3.2. Representation of a photon packet

Data structures are an important part of the
program. Logically related parameters are
organized by structures in C such that the program
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Fig. 2. Flowchart for tracing photons in multi-layered tissues
with the Monte Carlo simulation.

is easier to write, read, maintain and modify. The
parameters for a photon packet are grouped into
a single structure defined by:

typedef struct {

double x, y ,z; /* Cartesian coordinates.[cm] */

double ux, uy, uz;/* directional cosines of a photon direction. */
double w; /* weight. */

Boolean dead; /* 0/1 if photon is propagating/terminated. */
double s; /* dimensionless step size to be taken. */

long scatters; /* number of scatterings. */
short layer; /* index to layer where photon packet resides. */
PhotonStruct;
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The location of a photon packet described by the
Cartesian coordinates (x, y, z) is represented by
the structure members x, y, z. The traveling direc-
tion of a photon packet described by the direc-
tional cosines (u,, u,, p,) is represented by the
structure members ux, uy, uz.

A simple variance reduction technique, implicit
photon capture [15], is used to improve the effi-
ciency of the Monte Carlo simulation. This tech-
nique allows one to equivalently propagate many
photons as a packet along a particular pathway
simultaneously. Each photon packet is initially
assigned a weight, W, equal to unity. The current
weight of the photon packet is denoted by the
structure member w.

The member dead, initialized to be 0 when the
photon packet is launched, represents the status of
a photon packet. If the photon packet has exited
the tissue or has not survived a Russian roulette
(to be discussed) when its weight is below the
threshold weight, the member dead is set to 1. It is
used to signal the program to stop tracing the cur-
rent photon packet. The type Boolean is not an in-
ternal data type in ANSI Standard C, and is
defined to be type char in the header file of
MCML.

The member s is the step size in dimensionless
unit, which is also called ‘optical distance’ and
defined as the integration of the interaction coef-
ficient pu, over the photon pathway. [16] In a
homogeneous medium, the optical distance is
simply the photon pathlength multiplied by the in-
teraction coefficient. The member scatters is used
to store the number of scatterings experienced by
a photon packet. When photon weight is scored,
the member scatters is used to identify the unscat-
tered reflectance or transmittance, or the first in-
teractions inside the tissue.

The member layer is the index to the layer where
the photon packet resides. It is defined for compu-
tation efficiency, although the layer can always be
identified according to the z coordinate of the pho-
ton packet and the geometric structure of the
media. The member layer is updated only when the
photon packet crosses layer interfaces.

3.3. Photon launching
The photon is injected orthogonally onto the tis-

sue at the origin, which corresponds to a col-
limated infinitely narrow beam of photons. The
photon position (x, y, z) is initialized to (0, 0, 0),
and the directional cosines (g, p,, p,) are set to
(0, 0, 1). The weight is initialized to 1, and several
other structure members including dead, scatters,
and layer in the structure PhotonStruct are also in-
itialized.

When the photon is launched, if there is a
refractive-index-mismatched interface between the
tissue and the ambient medium, then some
specular reflectance will occur. If the refractive in-
dices of the outside medium and tissue are n, and
ny, respectively, then the specular reflectance, Ry,
is specified: [17, 18]

R = ('11—"2)2

®T () G2

If the first layer is clear medium, which is on top
of a layer of medium whose refractive index is ns,
multiple reflections and transmissions on the two
boundaries of the clear layer are considered. The
specular reflectance is then computed by:

=N+ (3.3)
l - nr;

where r; and r, are the Fresnel reflectances on the
two boundaries of the clear layer:

_ (m-ny)?
r = —(n_l + _nz)z‘ (34)
(n3 = ny)? (3.5)

rp=———"""7
(n3 + ny)

The photon weight, initialized to 1, is decreased
by R, for the photon packet to enter the medium:

W=1-R, (3.6)

If Eq. 3.2 is used, the structure member layer is
set to the first layer. Otherwise, Eq. 3.3 is used,
and the structure member layer is set to the second
layer. If, for any reason, there are multiple con-
secutive layers of clear media and they cannot be
combined into one layer due to mismatch of
refractive indices, the photon packet will be laun-
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ched into the second layer and start propagation
with the Monte Carlo method.

3.4. Photon’s step size

The step size of the photon packet is calculated
based on a sampling of the probability distribution
for the photon’s free path s (0 = s < o0), which is
the step size. We will first consider an infinite tur-
bid medium. According to the definition of inter-
action coefficient p, the probability of
photon-tissue interaction per unit pathlength in
the interval (s’, s’ + ds’) is:

_ —dP{s =z 5’
= P{s = s’ }ds’ 3.7
or
dIn(P{s = s’ })) = -, ds’ 3.8)

where P{} gives the probability for the condition
inside the {) to hold. Eq. 3.8 can be integrated
over s’ in the range (0, s;) and can lead to an ex-
ponential distribution, where P{s = 0} =1 is
used:

Pls 2 51} = exp(-p,s1) (3.9

Eq. 3.9 can be rearranged to yield the cumulative
distribution function of free path s:

Pis < 51} =1 = exp(~p;sy)} (3.10)
The probability density function of free path s is:
p(s1) = dP{s < s,}/ds) = p, exp(—p5)) (3.11
p(s1) can be substituted into Eq. 3.1 to yield:

51 = =In(1 - £)/g, (3.12)

or substituting £ for (1 — £) due to the symmetry
of £ about 0.5:

51 = ~In(¢)/p,, (3.13)

Eq. 3.13 is used to sample the step size of a photon
movement in an infinite or semi-infinite medium.

A simpler approach to derive Eq. 3.12 is to assign
the cumulative distribution function to the uni-
formly distributed random number §.

In multi-layered turbid media, the photon
packet may experience free flights over multiple
layers of media before an interaction occurs. In
this case, the counterpart of Eq. 3.9 becomes:

P(s 2 sum) = exp (— ) u,ai) (3.14)

i

where i is the index to a layer, the symbol y,; is the
interaction coefficient for the ith layer, and s; is
the step size in the ith layer. The total step size

ssum 18

Ssum = Y Si (3.15)

The summation is over all the layers in which the
photon packet has traveled. Eq. 3.14 does not take
photon reflection and transmission at boundaries
into account because they are processed separate-
ly. The sampling equation is obtained by equating
Eq. 3.14 to &

Y musi =~ In(§) (3.16)

As you have seen, Eq. 3.13 is a special case of
Eq. 3.16 for a single layer. The sampling can be in-
terpreted as that the total dimensionless step size
is —In(£¢). Note that flights in clear layers do not
contribute to the left-hand side of Eq. 3.16 (or the
dimensionless step size) because the interaction co-
efficient is zero.

Eq. 3.16 will be used for sampling step size in
MCML, where dimensionless step size s is initializ-
ed to —In(¢). Only when the photon packet has
traveled through —In(%) in dimensionless unit will
a photon-tissue interaction occur. Therefore, a
photon packet may travel multiple substeps of size
s; to reach an interaction site in the multi-layered
tissue. When an interaction occurs, the whole pho-
ton packet experiences interaction, via either ab-
sorption or scattering.

This sampling method involves computation of
a logarithm function, which is time-consuming.
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Fast methods can be used to alleviate the logarith-
mic computation [19-21]}.

3.5. Photon moving

Once a substep s; (cm) is determined, the pho-
ton is moved in the tissue. The position of the pho-
ton packet is updated by:

X = X+ pS;

Yy =yt ms (3.17)
Z = Z+ P

where the arrows indicate quantity substitutions.
The variables on the left-hand side have the new
values, and the variables on the right-hand side
have the old values. In a C program, an equal sign
is used for this purpose.

3.6. Photon absorption

Once the photon has reached an interaction site,
a fraction of the photon weight, AW, absorbed by
the interaction site must be calculated:

AW = (pa/p)W (3.18)

which will be deposited in the local grid element.
If the photon packet has not been scattered, the
photon weight AW is scored into the array for first
photon-tissue interactions (to be discussed).
Otherwise, the photon weight AW is scored into
A(r, z) at the local grid element:

A(r, 2) — A(r, 2) + AW (3.19)
The photon weight has to be updated as well by:
We— W-AW (3.20)

The photon packet with the new weight W will suf-
fer scattering at the interaction site.

3.7. Photon scattering

Once the photon packet has reached an interac-
tion site and its weight decreased, the photon
packet with the updated weight is ready to be scat-
tered. There will be a deflection angle, 8 (0 < 6 <
m), and an azimuthal angle, ¥ (0 < y < 27), to be

sampled statistically. The probability distribution
for the cosine of the deflection angle, cos 6, is
described by the scattering function that Henyey
and Greenstein [10] originally proposed for galac-
tic scattering:

1-g°
21 + g% -2 g cos §)3?

p(cos 6) = (3.21)

where the anisotropy, g, equals {(cosf) and has a
value between -1 and 1. A value of 0 indicates
isotropic scattering and a value near 1 indicates
forward-directed scattering. Jacques et al. [22]
determined experimentally that the Henyey-
Greenstein function describes single scattering in
tissue very well. Values of g range between 0.3 and
0.98 for tissues, but quite often g is ~ 0.9 in the
visible spectrum. Applying Eq. 3.1, the choice for
cos 0 can be expressed as a function of the random
number, §:

cos 6 =

28 -1 ifg=0
(3.22)

Next, the azimuthal angle, ¥, which is uniformly
distributed over the interval 0 to 2w, is sampled:

Y = 2n¢ (3.23)
Once the deflection and azimuthal angles are
chosen, the new direction of the photon packet can

be calculated: [12]

'y = sin B(pep, cOs ¥ — p, sin §)/

VT < p.2 + py cos 8
p'y = sin B(u,p, cOs Y + p, sin Y)/

V1 =2+ p, cos 6 (3.24)
.= —sin 6 cos ¥

V1 =2 + p; cos 8

If the photon direction is sufficiently close to the
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z-axis (e.g. lp,l > 0.99999), then the following
formulas should be used:

p'=sin 6 cos
p', =sin 6 sin ¥ (3.25)
p’, = SIGN(y,) cos 8

where SIGN(u,) returns 1 when g, is positive, and
returns —1 when g, is negative.

In the sampling of the two angles 8 and , and
the wupdating of the directional cosines,
trigonometric operations are involved. Because
trigonometric  operations are computation-
intensive, we try to minimize them whenever alter-
native algebraic operations are possible [14].

3.8. Photon hitting a boundary

During a step of size s (dimensionless), the pho-
ton packet may hit a boundary of the current
layer, where the boundary may either be an inter-
face between the tissue and the ambient medium or
an interface between the current layer of tissue and
another layer of tissue. The photon packet can be
either internally reflected by the boundary or
transmit across the boundary. If the photon packet
is reflected back into the same layer or crosses into
the next layer of tissue, the photon propagation
will continue. If the photon packet escapes the tis-
sue to the ambient medium, it will be observed as
reflectance or transmittance depending on which
ambient-medium-to-tissue interface the photon
packet escapes from. Several steps are involved in
the simulation when the photon packet hits a
boundary of the current layer.

Step 1, the distance between the current photon
location (x, y, z) and the boundary of the current
layer in the direction of the photon propagation is
computed:

(zo—2)u, if p, < 0
if p, =0 (3.26)
(2 = 2)p; if p, >0

db= oo

where z; and z) are the z coordinates of the upper

and lower boundaries of the current layer (see Fig.
1 for the Cartesian coordinate system). If u, is
zero, the distance is infinity and represented by
DBL__MAX in C [23].

Step 2, we decide whether the step size s (dimen-
sionless) is greater than dj:

dyp, < s (3.27)

where g, is the total interaction coefficient of the
current layer. If the above equation holds, the
photon packet will hit the boundary, and we move
the photon packet to the boundary and update s
by s — dyu,, i6. s — s~ dyp,.

If Eq. 3.27 does not hold, the step will fit in the
current layer, and we move the photon by s/y, to
reach an interaction site and update s to zero.
Now, the photon must experience absorption and
scattering. Then, a new dimensionless step size
should be generated using -In(£) and go back to
step 1.

Step 3, if the photon packet hits a boundary, we
need to compute the probability of a photon
packet being internally reflected, which depends
on the angle of incidence, a;, onto the boundary,
where o; = 0 means orthogonal incidence. The
value of ¢; is calculated:

a; = cos”'(Ip,)) (3.28)

Snell’s law indicates the relationship between the
angle of incidence, ¢, the angle of transmission,
a,, and the refractive indices of the media that the
photon is incident from, n;, and transmitted to n,:

n; sin a; = n, sin . (3.29)

If «; is larger than the critical angle (possible only
when n; > n,), which is sin~!(n/n;) , the internal
reflectance, R(e;), is set to 1. Otherwise, R(w;), is
calculated by Fresnel’s formulas: [17,18]

1 [sinz(a,-—a,) . tan%(a; — a,)]

R(ey) = —
(@) sin%(o; + o) tan¥(a; + o))

2
(3.30)

which is an average of the reflectances for the two
orthogonal polarization directions, because the
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light in the simulation is assumed to have no par-
ticular polarization. Similar to Section 3.7, the
number of trigonometric operations in Eqgs.
3.28-3.30 need to be minimized to increase com-
putational speed.

Step 4, we determine whether the photon is in-
ternally reflected or transmitted by generating a
random number, £, and comparing the random
number with the internal reflectance, i.e.:

If ¢ < R(e;) then the photon is internally
reflected (3.31)

If ¢ > R(a;) then the photon transmits.

If the photon is internally reflected, the photon
packet stays on the boundary and its directional
cosines (u,, iy, ;) must be updated by reversing
the z component:

(kxs Hys /“'z) = (phx Hys "/"'z) (332)

Then, go back to step 1.

If the photon packet transmits across the
boundary, we have to know whether the photon
packet has entered another layer of tissue or the
ambient medium. If the photon packet is trans-
mitted to the next layer of tissue, it must continue
propagation with an updated direction and step
size. The new directional cosines are:

p’. =sin o p/sin g
p'y = sin @, p,/sin o; (3.33)
#, = SIGN(u,)cos o

or employing Snell’s law (Eq. 3.29), Eq. 3.33
becomes

”"x = ”’xni/nl
Wy = pypnln, (3.34)
w’, = SIGN(y,) cos o,

Then, go back to step 1 for the next substep of pro-
pagation.

If the photon packet escapes the tissue into the
ambient medium, the photon weight is scored into
diffuse reflectance or transmittance. If the photon

packet has not been scattered, the photon weight
is scored into unscattered reflectance or transmit-
tance depending on where the photon packet
escapes (to be discussed). If the photon packet has
been scattered at least once, the diffuse reflectance,
RAr, ), or diffuse transmittance, T(r, «,), at the
particular grid element (r, «,) must be in-
cremented by the amount of escaped photon
weight, W:

Ry(r,a) — Ry(r,a) + Wifz=0

Td(ra a[) b Td(r, al) + Wif z=
the bottom of the tissue.

(3.35

Because the photon has completely escaped, the
tracing of this photon packet ends here. A new
photon may be launched into the tissue and traced
thereafter.

An alternative approach toward modeling the
effect on the interface between the tissue and the
ambient medium may be selected in MCML.
Rather than making the internal reflection of the
photon packet an all-or-none event, a partial
reflection approach can be used each time a pho-
ton packet strikes the surface boundary. A frac-
tion 1 — R(e)) of the current photon weight
escapes the tissue and increments the local reflec-
tance or transmittance array, i.e. RAr, o) —
Ryr, a) + W(1 = R(ay), or TAr, ) — TAdr.a)
+ W(1 - R(a)), or the same amount of weight is
scored into the unscattered reflectance or trans-
mittance. The remainder of the photon weight is
reflected, and the photon weight is updated as W
— W R(e,), and then the propagation continues.
The all-or-none approach is faster, but the partial
reflection approach may reduce the variance of the
reflectance or transmittance.

Since we have avoided dividing by g, in identi-
fying boundary crossing, clear layers, which have
zero total interaction coefficient, do not have to be
treated separately from general tissues. If the pho-
ton packet is in a layer of clear medium, the pho-
ton packet is moved to the boundary of the clear
layer without altering the remaining dimensionless
step size because of its zero interaction coefficient

e
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3.9. Photon termination

After a photon packet is launched, it can be ter-
minated naturally by reflection or transmission
out of the tissue. For a photon packet still pro-
pagating inside the tissue, if the photon weight, W,
has been sufficiently decreased after many steps of
interaction such that it falls below a threshold
value (e.g. Wy, = 0.0001), then further propaga-
tion of the photon yields little information unless
the interest is in the very late stage of photon pro-
pagation. However, proper termination must be
executed to ensure conservation of energy (or
number of photons) without skewing the distribu-
tion of photon deposition. A technique called Rus-
sian roulette [24,25) is used to terminate the
photon packet when W < W,. The Russian
roulette technique gives the photon packet one
chance in m (e.g., m = 10) of surviving with a
weight of mW. If the photon packet does not sur-
vive the Russian roulette, the photon weight is
reduced to zero and the photon is terminated, i.e.:

W {mwlfg < lm (3.36)

0 if&>1m

where £ is the uniformly distributed pseudo-
random number (0 < ¢ < 1). This method con-
serves energy, yet terminates photons in an unbias-
ed manner. The combination of Russian roulette
and splitting, which is contrary to roulette, may be
used appropriately to reduce variance [24,25].

4. Scored physical quantities

As mentioned earlier, during the Monte Carlo
simulation we record the photon reflectance,
transmittance, and absorption. In this section we
discuss in detail the process of these physical quan-
tities. Dimensions of some of the quantities are
shown in square brackets at the end of their
respective formulas.

In MCML, 1-D and 2-D physical quantities are
stored in 1-D or 2-D arrays correspondingly.
These arrays are dynamically allocated [26] at run
time so as to allow users to specify the dimension
sizes without recompiling the program and
wasting memory, which are the problems of defin-
ing static arrays.

The last cells in the r and z directions require
special attention. Because photons can propagate
beyond the grid system, when the photon weight is
recorded into the diffuse reflectance or transmit-
tance array, or absorption array, the physical loca-
tion may not fit into the grid system. In this case,
the last cell in the direction of the overflow is used
to collect the photon weight; therefore, the last
cells in the r and z directions do not indicate the
real value at the corresponding locations. How-
ever, the angle « is always within the bound we
select, i.e. 0 < o < 7/2, hence precluding a prob-
lem in the scoring of angular distributions of dif-
fuse reflectance and transmittance.

4.1. Reflectance and transmittance

When a photon packet is launched, the specular
reflectance Ry, is computed immediately. The
photon weight after the specular reflection is
transmitted into the tissue. During the simulation,
some photon packets may exit the media; their
weights are accordingly scored into the diffuse
reflectance or diffuse transmittance depending on
where the photon packet exits. These packets are
internally represented by two arrays R;_,l[i,, i,]
and T,_,.[i,, i), respectively, in the program,
where i, and i, are the indices for r and « which
are in the range: 0 < i, = N,-1, 0 =<
i, = N, ~ 1 for diffuse reflectance or transmit-
tance. Unscattered photon weight is scored into
R, [-1] and T,_,[-1]. The coordinates for each
index are optimized to minimize error [27]:

r= [(i +0.5) + Ar [cm] (4.1)

i
12(i + 0.5)]

a=(i+0.5) Ax + c tan[(i + 0.5)Aa]
[1 - —Az‘l ¢ tan (i‘zi)] [rad] (4.2)

After tracing multiple photon packets (N), the raw
data R;_ [, i) and T,_,li, i,) provide the
total photon weight in each grid element in the
two-dimensional grid system. To compute the
total photon weight in the grid elements in each
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direction of the two-dimensional grid system, we
sum the 2-D arrays in the other dimension:

Ny — 1
Ri-lil= Y, Risalis, io] (4.3)
T
N —
Ry oli] = E Ry_roliys i) (4.4)
i'=0
No— |
Td— r[ir] = E Td— ra[ir’ ia] (45)
=0
N—
Td - u[ia] = E Td - ra[irs ia] (46)
=0

To compute the total diffuse reflectance and
transmittance, we sum the I-D arrays:

N =1

Ri= ), Ry_.lil “.7)
i,=0
N—

Ty= Y, T, lid (4.8)

These arrays provide the total photon weight per
grid element based on N initial photon packets
with unit weight. To convert the raw R, _,[i,, i,]
and T, _,[i, i,] into photon probability per unit
area perpendicular to the photon direction per
solid angle, they are divided by the projection of
the annular area onto a plane perpendicular to the
photon exiting direction (Aa cos ), the solid angle
(AQ) spanned by a grid separation in the « direc-
tion around an annular ring, and the total number
of photon packets (N):

R, ra[irs iy] ~ Rd— ra[irs i)/

(Aa cos o AR N) [em ™2 sr7!] 4.9)
Ty yolins io] = Ty relir i)/

(Aa cos a AQ N) [cm™2 sr™] (4.10)
where
Aa = 27(i, + 0.5)(Ar)? [cm?] 4.11)

AQ = 4x sin[(i, + 0.5)Aa] sin(Aa/2) [s1] (4.12)

where r and o are computed from Eq. 4.1 and Eq.
4.2, respectively. The raw, radially resolved diffuse
reflectance Ry;_,[i,] and diffuse transmittance
T,_,[i,] are divided by the area of the annular
ring (Aa) and the total number of photon packets
(N) to convert them into photon probability per
unit area:

Ry_li] = Ry_,li}(Aa N) [em™?] (4.13)
Ty il — T, li)/(aa N) [em™] (4.14)

The raw R;_,[-1] and T;_,[-1] need only to be
normalized by N to get total unscattered reflec-
tance and transmittance, respectively. Then
R, _,[-1]is augmented by the specular reflectance
Ry, The raw angularly resolved diffuse reflec-
tance R, _ ,li,] and diffuse transmittance T, _ ,[i,]
are divided by the solid angle (AQ) and the total
number of photon packets (N) in order to convert
them into photon probability per unit solid angle:

Rj_oli] = Ra-oli(AQ N) [st7'] (4.15)
Ty-olia] = Ty oliad/(AQ N) [st7] (4.16)

The raw total diffuse reflectance R; and transmit-
tance T, are divided by the total number of pho-
ton packets (N) to get the probabilities,
respectively:

Ry — Ry/N[-1 (4.17)

Ty— Ty/N[-1 4.18)
where [ — ] means dimensionless units.

4.2. Internal photon distribution

During the simulation, the absorbed photon
weight is scored into the absorption array A4,,[i,,
i,], where i, and i, are the indices for grid elements
in r and z directions 0 <i =< N,-1,
0<i = N,-1 for multiple interactions).
A,.[-1, i;] is used to score the first interactions.
The coordinate for each index i, is shown in Eq.
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4.1. The coordinate for each index i, is the center
of a grid element in the z direction:

z=(i, +0.5) Az (4.19)

The raw A4,, [i,, i,] provides total photon weight in
each grid element in the two-dimensional grid sys-
tem. To get the total photon weight in each grid
element in the z direction, we sum the 2-D array in
the r direction:

N=1

AL =Y, Al (4.20)
=0

The total photon weight absorbed in each fayer,

Ajllayer], and the total photon weight absorbed in
the tissue, A4, can be computed from A4.[7]:

Ajllayer] = ): A, i) 4.21)
i, in layer
N~ |
A=Y Ali] 4.22)
=0

where the summation range ‘i. in layer’ includes
all i, values that lead to a z coordinate in the
layer. Then, these raw quantities are scaled ap-
propriately to get the densities:

Arlini] — A lini)/(AaAzN)[cm ™) (4.23)
A [-1i] = A.[- Li)/(AzN)[cm ™ (4.24)
A[i] — A:[.)(AzN)[em™] (4.25)
Ajllayer] — Aflayer)/N[-] (4.26)
A — A/N [-] (4.27)

where Aais given in Eq. 4.11. The quantity 4 pro-
vides the photon probability of being absorbed by
the tissue; the 1-D array Aj[layer] provides the
photon probability of being absorbed in each
layer; the array 4,.[i,, i,] provides the absorption
photon probability density (cm~?), which can be
converted into photon fluence (cm™2), ¢,., by

dividing it by the local absorption coefficient, g,
(cm™!), of the layer:

é,.liy, ] = ALy, iVp, [cm™3] (4.28)

The 1-D array A4,[i,] provides the photon proba-
bility per unit length in the z direction (cm™)
which can also be divided by the local absorption
coefficient, u, (cm™), to yield a dimensionless
quantity ¢,[i.]:

¢z[iz] = Az[iz]/“a [ - ] (429)

At first glance, this quantity may seem difficult
to understand, or seem to be redundant. However,
the summation of the raw data in Eq. 4.20 equals
the convolution for an infinitely wide flat beam
[14], which yields the internal fluence as a function
of z. For a photon beam that is much wider than
the mean free path, the internal fluence at the z-
axis as a function of z can be approximated by Eq.
4.29. ‘

The equivalence of Eq. 4.29 to the convolution
for an infinitely wide flat beam can be shown as
follows. According to Eqs. 4.20, 4.23 and 4.25, the
final converted A4,[i,] and A,[i, i;] have the
following relation:

N~ 1

Al = Y Aplini:1Aat) (4.30
=0

where Aa(i,) is computed in Eq. 4.11, but here we

stress that it is a function of /.. Employing Eqgs.
4.28 and 4.29, Eq. 4.30 can be converted to:

Ne— 1
é:li.) = E &;liniz1Aa()) 4.31)
=0

This is a numerical solution of the following in-
tegral:

¢.(2) = Smdz,z(r,z)Z?rr dr (4.32)

0

Eq. 4.32 is the convolution for an infinitely wide
flat beam with a unit power density [14].
Therefore, ¢.[i.] provides the fluence for an in-
finitely wide flat beam with a unit power density.
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5. Sample computation

Some computational results are described in this
section as examples. To verify the program, we
compared some of the results with the results from
other theories or with the Monte Carlo simulation
results from other investigators (detailed results
can be found in Ref. 14).

5.1. Total diffuse reflectance and total transmit-
tance

We computed the total diffuse reflectance R,
and total transmittance 7, (including unscattered
transmittance) of a slab of turbid medium with the
following optical properties: relative refractive
index n =1 (i.e. refractive-index-matched bound-
ary), absorption coefficient u, = 10 cm ™!, scatter-
ing coefficient p; = 90 cm™', anisotropy factor
g =0.75, and thickness d = 0.02 cm. Ten Monte
Carlo simulations of 50 000 photon packets each
were completed. Then, the averages and the stan-
dard errors of the total diffuse reflectance and
total transmittance were computed (Table 1). The
table also lists the results from van de Hulst’s table
[28] and from Monte Carlo simulations by Prahl
et al. [2]. All results agree. The columns ‘R, aver-
age’ and ‘R; error’ are the average and standard
error of the total diffuse reflectance, respectively,
while the columns ‘T, average’ and ‘T, error’ are
the average and the standard error of the total
transmittance.

For a semi-infinite turbid medium that has a
mismatched refractive index with the ambient me-

Table 1

Verification of the total diffuse reflectance and the total
transmittance in a slab with a refractive-index-matched bound-
ary by comparing with the results from van de Hulst’s table [28]
and from Monte Carlo simulations by Prahl et al. [2]

Source R, R, T, T,
average  error average  error
van de Hulst, 0.09739 0.66096
1980
MCML 0.09734  0.00035  0.66096  0.00020

Prahl et al,,  0.09711 0.00033 0.66159 0.00049
1989

Table 2

Verification of the total diffuse reflectance in a semi-infinite
medium with a refractive-index-mismatched boundary by com-
paring with the results by Giovanelli [29] and Prahl et al. [2]

Source R, average R, error
Giovanelli, 1955 0.2600

MCML 0.25907 0.00170
Prahl et al., 1989 0.26079 0.00079

dium, the average and the standard error of the
total diffuse reflectance are computed similarly
and are compared in Table 2 with Giovanelli’s [29]
results and Monte Carlo simulation results by
Prahl et al. [2). The medium has the following op-
tical properties: relative refractive index n = 1.5,
pa =10 cm™', u, =90 cm~, g = 0 (isotropic scat-
tering). Ten Monte Carlo simulations of 5000 pho-
ton packets each are completed to compute the
average and the standard error of the total diffuse
reflectance.

5.2, Angularly resolved diffuse reflectance and
transmittance

We used MCML to compute the angularly
resolved diffuse reflectance and transmittance of a
slab of turbid medium with the following optical
properties: relative refractive index n=1, p, = 10
em™, p,;=90 cm™!, g=0.75, and thickness
d=0.02 cm. In the simulation, 500 000 photon
packets were used, and the number of angular grid
elements was 30. The results are compared with
the data from van de Hulst’s table [28], as shown
in Fig. 3.

The variance in Fig. 3a for diffuse reflectance is
larger than that in Fig. 3b for diffuse transmit-
tance, which is due to the difference in value be-
tween the total diffuse reflectance and the total
diffuse transmittance. As shown in Table 1, the
total diffuse reflectance is 0.09739, and the total
transmittance is 0.66096. Because the unscattered
transmittance is exp(—(u, + py)d) = exp(-2) =
0.13534, the total diffuse transmittance is
0.66096 — 0.13534 = 0.52562; hence, the total dif-
fuse reflectance (0.09739) is much less than the
total diffuse transmittance (0.52562).
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Fig. 3. Angularly resolved (a) diffuse reflectance R{a) and (b)
diffuse transmittance T{a) vs. the angle o, where « is the
angle between the photon exiting direction and the normal to
the medium surface. Solid circles are from van de Hulst’s table
and open square boxes are from MCML simulation. The opti-
cal parameters are: relative refractive index n=1.0, p,=10
em™', u, =90 cm™!, g = 0, thickness d = 0.02 cm.

Because van de Hulst [28] used a different de-
finition of reflectance and transmittance of exiting
angles than we did, and a normalization to inci-
dent flux =, we multiplied van de Hulst’s data by
the cosine of the exiting angle from the normal to
the surface, then divided by =.

5.3. Depth resolved internal fluence

As an example, we show the depth resolved in-
ternal fluences for two semi-infinite media with
refractive-index-matched and refractive-index-
mismatched boundaries, respectively (Fig. 4). The
dimensionless internal fluence as a function of
depth z, ¢.[i.], described in Section 4.2 is com-

&)l
B
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1T T~ — - N =137} |
1 o~ I

Fluence [-]

111 mfp’
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Fig. 4. Comparison of internal fluences as a function of depth
z for two semi-infinite media with a refractive-index-matched
boundary and a refractive-index-mismatched boundary,
respectively. The optical parameters are: relative refractive
index n=1.0 or 1.37, g, =0.1 em™!, p; =100 cm~!, g =0.9.
The results are from Monte Carlo simulations with 1 million
photon packets, each using MCML. The grid line separation
and number of grid elements in the z direction are 0.005 cm and
200, respectively.

puted from the impulse response to an infinitely
narrow photon beam, normally incident on a semi-
infinite medium. However, it can be equivalently
considered as the response of an infinitely wide
photon beam with a unit power density perpen-
dicularly incident on a semi-infinite medium (see
Section 4.2). Because the direct output of the pro-
gram MCML provides 4,[i,] instead of ¢,[i;], we
divided 4,[i,] by the absorption coefficient of the
semi-infinite medium to obtain ¢,[i,]. Although
the impulse response is considered (Fig. 4), if the
input photon beam is measured in W/cm? or
J/icm? as the power density or energy density, the
unit of fluence is also in the unit of W/cm? or
J/em?, correspondingly. Because we consider only
steady-state responses, we can discuss either
energy density or power density because they can
be converted back and forth.

The fluence near the surface is larger than one
because the back scattered light augments the
fluence. Furthermore, the internal fluence for the
medium with a refractive-index-mismatched
boundary is higher than that for the medium with
a refractive-index-matched boundary. This is due
to the internal reflection by the refractive-index-
mismatched boundary, therefore, the photons that
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would escape from the refractive-index-matched
boundary of a medium may be reflected back into
the medium by the refractive-index-mismatched
boundary and, hence, have an increased chance to
be absorbed. When z is sufficiently deep, the two
curves are parallel, which confirms the valid range
of diffusion theory. For z larger than the penetra-
tion depth §, diffusion theory [30] predicts that the
internal fluence distribution should be:

#(2) = dppk exp(-z/8) (5.1

where k is a scalar that depends on the amount of
back scattered reflectance, and ¢, is the incident
irradiance, which is one in our MCML simulation.
The scalar k is obviously a function of the relative
index of refraction. Therefore, the refractive-
index-matched boundary and the refractive-index-
mismatched boundary will have different & values.
The penetration depth é is computed:

6= 11" 3p, s + p(1 - 8)

= 1/A/3(0.1)(0.1 + 100(1 - 0.9)) = 0.57 cm (5.2)

which is independent of relative index of refrac-
tion. Therefore, the two curves in Fig. 4 should be
off by just one factor due to different k values
when z > §, which means the curves are parallel
in a log-linear plot when z > 4. The two curves
shown here are parallel even when z > |
mfp’ = V(u, + ul — g)) = 0.1 cm, where mfp’
is the transport mean free path. One mfp’ may be
a better criterion for valid application of diffusion
theory than the penetration depth 8. Further sup-
porting evidence can be found in Ref. 31.

We fit the parallel part of the two curves with
exponential functions. The damping constants for
the curves are approximately 1.73 cm™' for the
refractive-index matched boundary and 1.74 cm™!
for the refractive-index-mismatched boundary.
The reciprocals of the damping constants are 0.578
cm for the refractive-index-matched boundary and
0.575 cm for the refractive-index-mismatched
boundary. They are very close to the penetration
depth (0.57 cm, Eq. 5.2) predicted from diffusion
theory.

6. Summary

A Monte Carlo model of steady-state light
transport in multi-layered tissues (MCML) has
been coded in ANSI Standard C. As a result, the
program can be executed on various computers as
long as they support ANSI Standard C. We have
successfully tested MCML on IBM PC/com-
patibles, Macintoshes, Sun SPARCstations 2,
SiliconGraphics IRIS workstations, and IBM
RISC/6000 POWERSstations 320. Also, we have
verified some of the MCML computational results
with those of other theories or cther investigators.
We have been developing a more general Monte
Carlo code to simulate light transport in com-
posite turbid media which can include complex
geometric shapes. [32]

Dynamic data allocation is used for MCML,
hence the number of tissue layers and grid ele-
ments of the grid system can be varied by users at
run time provided that the total amount of
memory needed does not exceed what the system
allocates. Therefore, this method of data alloca-
tion is more flexible than defining static arrays of
fixed size at compile time.

In MCML, photon pathlength in clear layers
does not contribute to the sampled optical path-
length for an interaction with tissue to occur.
Hence, no photons will be absorbed by the clear
media, which was expected.

Instead of using the centers of grid elements, the
coordinates of the simulated data for each grid ele-
ment in the radial and angular directions are op-
timized. The deviation of the center from the
optimized point in the first grid element is 25% and
decreases as the index to the grid element in-
creases. Because the optimized coordinates are
computed only after simulating the photons, the
optimized coordinates do not increase the simula-
tion time to allow better precision. More impor-
tantly, we learned to consider the linearity rather
than the resolution in grid elements because to
achieve improved resolution we can interpolate the
data. Therefore, we select the maximum grid size
while satisfying linearity of grid elements in order
to reduce the statistical variance in the Monte
Carlo simulations.

The Monte Carlo simulation package can be
downloaded from our anonymous FTP site (host
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name: laser.mda.uth.tmc.edu, I.P. address: 129.
106.60.92) or obtained from the authors (Email:
lihong@laser.mda.uth.tmc.edu).
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